: Fuzzy Logic - Мои статьи - Каталог статей - ремонт холодильников.мазганов.стиральних машин
Меню сайта
Категории раздела
Мои статьи [2678]
Мини-чат
Наш опрос
Оцените мой сайт
Всего ответов: 98
Форма входа
Корзина
Валюта

Поиск
Календарь
Лучшие Сайты
Израиля
 Ремонтная фирма S.S.V.Elektroniks производит ремонт холодильников.стиральных и сушильных машин.кондиционеров.телевизоров.компютеров
Архив записей
Онлайн всего: 1
Гостей: 1
Пользователей: 0
s.s.v.elektroniks s.s.v.elektroniks free counters Израиль - каталог сайтов, рейтинг, обзоры интернета Каталог сайтов Всего.RU Ремонт бытовой техники Яндекс цитирования Каталог сайтов Оптиме - каталог Свободный каталог сайтов Объявления - ALASKO.ru
Суббота, 23.11.2024, 06:13
Приветствую Вас Гость | RSS
Главная | Регистрация | Вход
s.s.v.elektroniks 050-6029232 052-3308734 055-9419055
Главная » Статьи » Мои статьи

Fuzzy Logic

Областью внедрения алгоритмов нечеткой логики являются всевозможные экспертные системы, в том числе: нелинейный контроль за производственными процессами; самообучающиеся системы, исследование рисковых и критических ситуаций; распознавание образов и др.
В отличие от традиционной математики, требующей на каждом шаге моделирования точных и однозначных формулировок закономерностей, нечеткая логика предлагает иной уровень подход, при котором постулируется лишь минимальный набор закономерностей.
Нечеткие числа, получаемые в результате «не вполне точных измерений», во многом аналогичны распределениям теории вероятностей. В пределе, при возрастании точности, нечеткая логика приходит к стандартной, Булевой. По сравнению с вероятностным методом, нечеткий метод позволяет резко сократить объем производимых вычислений, что, в свою очередь, приводит к увеличений быстродействия нечетких систем. Базовые понятия нечеткой логики

Прогноз погоды обычно выглядит так: завтра температура воздуха +5°С, возможен дождь. В этом случае даже профессиональные синоптики не могут точно сказать, будет дождь или нет. Это и есть проявление нечеткой логики: погода завтра может быть в данном случае как просто пасмурной, так и дождливой: события здесь предсказываются с некоторой долей уверенности (рангом).
Рассмотрим теперь другой пример, связанный с возрастом человека (рис. 1). Рис. 1. Нечеткое множество для термина «молодой»
До 16 лет нельзя однозначно утверждать, что человек молодой (например, 15-летние относятся к категории «молодой» с рангом около 0,9). Зато диапазону от 16 до 30 пет можно присвоить ранг 1, т.е. человек в этом возрасте действительно молодой.
После 30 лет человек считается уже не молодым, но еще и не старым, здесь принадлежность (ранг) термина «молодой» возрасту будет принимать значения в интервале от 0 до 1. И чем больше возраст человека, тем меньше становится его принадлежность к соответствующему терму (см. ниже), т.е. ранг будет стремиться к 0.
Таким образом, было получено нечеткое множество, описывающее понятие молодости для всего диапазона возрастов человека. Если ввести остальные термины (например, «очень молодой», «старый» и т.д.), то можно охарактеризовать такую переменную, как возраст, состоящую из нескольких нечетких множеств и полностью перекрывающую весь жизненный период человека.
Ключевыми понятиями нечеткой логики являются: фаззификация — сопоставление множеству значений аргумента (х) некоторой функции принадлежности М(х), т.е. перевод значений (х) в нечеткий формат (см. пример с термином «молодой»); дефаззификация — процесс, обратный фаззификации.
Все системы с нечеткой логикой функционируют по одному принципу: показания измерительных приборов фаззифицируются (переводятся в нечеткий формат), обрабатываются, дефаззифицируются и в виде привычных сигналов подаются на исполнительные устройства.
Функция принадлежности — это не вероятность, т.к. нам неизвестно статистическое распределения, нет повторяемости экспериментов.
Так, если взять из рассмотренного выше примера прогноза погоды два взаимоисключающих события: «будет дождь» и «дождя не будет» и присвоить им некоторые ранги, то сумма этих рангов необязательно будет равна 1 (но если равенство все таки есть, то нечеткое множество считается нормированным). Значения функции принадлежности М(х) могут быть взяты только из априорных знаний, интуиции (опыта), опроса экспертов.
В нечеткой логике вводится понятие лингвистической переменной, значениями которой являются не числа, а слова естественного языка, называемые термами. Например, а случае управления мобильным роботом, задачей которого является объезд помех, можно ввести две лингвистические переменные: ДИСТАНЦИЯ (расстояние от робота до помехи) и НАПРАВЛЕНИЕ (угол между продольной осью робота и направлением на помеху).
Рассмотрим лингвистическую переменную ДИСТАНЦИЯ. Значениями ее можно определить термы ДАЛЕКО, СРЕДНЯЯ, БЛИЗКО и ОЧЕНЬ БЛИЗКО. Для физической реализации лингвистической переменной необходимо определить точные физические значения термов этой переменной.
Пусть переменная ДИСТАНЦИЯ может принимать любое значение из диапазона от нуля до бесконечности. Согласно положениям теории нечетких множеств, в таком случае каждому значению расстояния из указанного диапазона может быть поставлено в соответствие некоторое число от нуля до единицы, которое определяет степень принадлежности данного физического расстояния (допустим 40 см) к тому или иному терму лингвистической переменной ДИСТАНЦИЯ.
Степень принадлежности определяется так называемой функцией принадлежности М(d), где d — расстояние до помехи. В нашем случае расстоянию 40 см можно задать степень принадлежности к терму ОЧЕНЬ БЛИЗКО, равную 0,7, а к терму БЛИЗКО — 0,3 (см. рис. 2.). Рис. 2 Лингвистическая переменная и функция принадлежности

В каждом конкретном случае определение степени принадлежности дается экспертами, разрабатывающими систему управления.
Переменной НАПРАВЛЕНИЕ, которая может принимать значения в диапазоне от 0 до 360 °, зададим термы ЛЕВОЕ, ПРЯМО И ПРАВОЕ. Теперь необходимо задать выходные переменные. В рассматриваемом примере достаточно одной переменной, которая будет называться РУЛЕВОЙ УГОЛ. Она может содержать термы: РЕЗКО ВЛЕВО, ВЛЕВО, ПРЯМО, ВПРАВО. РЕЗКО ВПРАВО.
Связь между входом и выходом фиксируется в таблице нечетких правил (табл. 1.10.1). Таблица 1. Таблица нечетких правил для мобильного робота

Каждая запись в данной таблице соответствует своему нечеткому правилу, например: «Если ДИСТАНЦИЯ БЛИЗКО и НАПРАВЛЕНИЕ ПРАВОЕ, тогда РУЛЕВОЙ УГОЛ РЕЗКО ВЛЕВО».
Таким образом, мобильный робот с нечеткой логикой будет работать по следующему принципу: данные с сенсоров о расстоянии до помехи и направлении на нее будут фаззифицированы, обработаны согласно табличным правилам, дефаззифицированы, и полученные данные в виде управляющих сигналов поступят на привод робота. Общая структура нечеткого микроконтроллера

Общая структура микроконтроллера, использующего нечеткую логику, показана на рис. 3. Рис. З. Общая структура нечеткого микроконтроллера
Она содержит в своем составе следующие составные части: блок фаззификации; базу знаний; блок решений; блок дефаззификации.
Блок фаззификации преобразует четкие («csisp») величины, измеренные на выходе объекта управления, в нечеткие величины, описываемые лингвистическими переменными в базе знаний.
Блок решений использует нечеткие условные («if— then») правила, заложенные в базе знаний, для преобразования нечетких входных данных в требуемые управляющие воздействия, которые носят также нечеткий характер.
Блок дефаззификации преобразует нечеткие данные с выхода блока решений в четкую величину, которая используется для управления объектом.
В качестве микроконтроллеров, поддерживающих нечеткую логику, можно назвать 68НС11, 68HC12 фирмы Motorola, MCS-96 фирмы Intel, а также некоторые другие.
Параллельно с развитием соответствующей элементной базы развиваются и инструменты программирования, которые позволяют как моделировать систему управления с нечеткой логикой, так и получать машинные коды. использующиеся впоследствии в «железе». Fuzzy Logic в стиральной машине

На рис. 4 показана схема микроконтроллера системы Fuzzy Logic, управляющей работой стиральной машины. Рис. 4. Схема микроконтроллера системы Fuzzy Logic, управляющей работой стиральной машины
На вход микропроцессора поступает информация о степени загрязнения белья и типе загрязнения. Выходным параметром является время стирки.
Оба входных параметра получаются от одного оптического датчика прозрачности моющего раствора в баке стиральной машины (рис, 5). Рис. 5 Оптический датчик прозрачности раствора

О степени загрязнения можно судить по прозрачности моющего раствора; чем ниже загрязнение белья, тем прозрачнее вода.
Первым входным параметром является «ПРОЗРАЧНОСТЬ РАСТВОРА». О типе загрязнения можно судить по скорости изменения прозрачности раствора (или, иными словами, по времени его насыщения); жирные загрязнения малорастворимы в воде и их концентрация в растворе медленнее выходит на уровень насыщения.
Загрязнения низкой жирности растворяются лучше, и раствор в баке стиральной машины скорее становится насыщенным.
Вторым входным параметром здесь является «ВРЕМЯ НАСЫЩЕНИЯ РАСТВОРА»
Таким образом, можно построить две функции принадлежности: в одном случае аргументом является степень загрязнения белья (рис. 6) в другом—тип загрязнения (рис. 7). В качестве диапазона изменения аргумента принимается интервал значений от 0 до 100. Рис. 6. Функция принадлежности для аргумента «степень загрязнения»
Рис. 7. Функция принадлежности для аргумента «тип загрязнения»

Значение выходного параметра «ВРЕМЯ СТИРКИ» (в данном случае это четкая величина, измеряемая в минутах) определяется с помощью набора нечетких правил «если... то», например: «Если ПРОЗРАЧНОСТЬ РАСТВОРА НИЗКА и ВРЕМЯ НАСЫЩЕНИЯ РАСТВОРА ВЕЛИКО, то ВРЕМЯ СТИРКИ ВЕЛИКО».
Или, что то же самое: «Если степень загрязнения высока и загрязнение жирное, то время стирки велико».
Полная таблица нечетких правил для стиральной машины дана в табл. 2 Таблица 2. Таблица нечетких правил для стиральной машины


При этом градации величины «ВРЕМЯ СТИРКИ» четко определены:
ОЧЕНЬ БОЛЬШОЕ — 60 мин;
БОЛЬШОЕ—40 мин.
СРЕДНЕЕ—20 мин;
МАЛОЕ—12 мин;
ОЧЕНЬ МАЛОЕ—8 мин.

Характер зависимости выходного параметра «ВРЕМЯ СТИРКИ» от значения функции принадлежности показан на рис. 8. Рис. 8. Характер зависимости выходного параметра «ВРЕМЯ СТИРКИ» от значения функции принадлежности
Совместное влияние двух функций принадлежности (двух входных параметров) на значение выходного параметра «ВРЕМЯ СТИРКИ», выражается зависимостью, показанной на рис. 9. Рис. 9. Зависимость выходного параметра «ВРЕМЯ СТИРКИ» от значений двух функций принадлежности

В данном примере, поясняющем принцип построения системы Fuzzy Logic, которая управляет стиральной машиной, рассматривался только один выходной параметр — «ВРЕМЯ СТИРКИ».
Следуя тому же принципу, в реальных системах управления рассматриваются и другие выходные параметры, например, «УРОВЕНЬ ВОДЫ», «СКОРОСТЬ ВРАЩЕНИЯ ПРИ ОТЖИМЕ» и т.д., а среди входных параметров, кроме рассмотренных в данном примере, фигурируют также «ЖЕСТКОСТЬ ВОДЫ», «ЗАГРУЗКА БЕЛЬЯ», «ТИП БЕЛЬЯ». Набор нечетких правил в этом случае представляет многопараметрическую таблицу, согласно которой происходит принятие решения (Рис. 10).
Число возможных вариантов программы стирки при этом исчисляется многими сотнями, в чем и выражается качественное отличие стиральных машин с системой управления Fuzzy Logic от машин с электромеханической системой управления.
Рис. 10. Принятие решения системой управления по набору значений входных параметров

Вызов мастера по ремонту стиральных машин в Израиле 0502125215 0504879119
Удачи в ремонте!
Категория: Мои статьи | Добавил: diavol (15.11.2009)
Просмотров: 431 | Теги: стиральной машины, холодильника, телевизор, мазгана, в севастополе, кондиционера, ремонт, Стиральная машина В10-322, компьютер, фото | Рейтинг: 0.0/0
Всего комментариев: 0
Имя *:
Email *:
Код *:
BLIZKO.ruМы на BLIZKO.ru
Copyright MyCorp © 2024